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A Short Proof of the Truemper-Tseng Theorem
on Max-Flow Min-Cut Matroids

Robert E. Bixby* Arvind Rajan!
Rice University AT&T Bell Laboratories

June 1, 1988

1 Introduction

Seymour has characterized the matroids satisfying the integral max-flow min-cut
property with respect to a fixed element [Se77b]. Truemper and Tseng [TsTr86]
subsequently proved a decomposition theorem for this class, similar in spirit to Wag-
ner’s characterization of the graphs containing no K5 minor [Wa37] and Seymour’s
characterization of the regular (totally unimodular) matroids [Se80]. The purpose of
this paper is to give a short, self-contained ! exposition of the Truemper-Tseng result.

2 Max-Flow Min-Cut Matroids

Throughout this paper M denotes a matroid on a finite set E. Fix | € E, and let
A be the {0,1}-matrix with columns indexed on elements e € E — ! (braces being
omitted since {{} is a singleton) and rows indexed on circuits C of M containing I,
such that the (C,e) entry is 1 iff e € C. In the case when M is graphic, the rows of
A correspond to paths joining the end-vertices of [.

Let C* be the family of cocircuits of M containing . We say that M is [-MFMC,
that is, has the (integral) maz-flow min-cut property with respect to [, if for every
choice of nonnegative integral vector w defined on F,

quei{:l_ w(C* — 1) =max {y"1 : y"A < w",y > 0 and integral},

*Partially supported by NSF grant DCR-8519204 and AFOSR grant AFOSR-87-0276.
tPartially supported by NSF grant DCR-8519204 at Rice University.
1 A basic knowledge of matroid theory is assumed, at the level of Chapter 3 in [Bi82].



where w(C* — 1) = 3 .¢c+_; w(e) and 1 is a vector of all 1s. Seymour [Se77b] proved
that a connected matroid is -MFMC if and only if it is binary and has no F} minor
containing the fixed element {. Denote this class by M.

1001101 1000110
0101011 0100101
0010111 00100171
0001111

Fano Matroid F» Dual Fano Matroid F7

Figure 1: Binary Representations of the Fano Matroids

The proof of Seymour’s theorem is difficult. However, a natural strengthening of
the hypotheses of his theorem yields a theorem that has an easy, or at least easier,
proof. This strengthening is obtained by further restricting the given matroid M,
insisting that it satisfy the max-flow min-cut property for every choice of /, not simply
one fixed choice. Designating such a matroid as MFMC, the expected theorem then
holds: M is MFMC iff it is binary and contains no F; minor. This result can be
proved by a straightforward calculation, using the fact that regular matroids are
known to be MFMC, after first proving a structural result. This structural result,
which is a consequence of Seymour’s “splitter” theory (see (7.6) of [Se80]), states that
every connected binary matroid with no F; minor can be built up using 2-sums 2 from
copies of F; and regular matroids. Thus, the only 3-connected, binary, nonregular
MFMC matroid is the Fano matroid F7. The Truemper-Tseng theorem provides a
similar result for the much more difficult class M.

We give a short proof of the Truemper-Tseng theorem. It should be noted, how-
ever, that neither this proof nor the original version in [TsTr86] includes a proof of
Seymour’s theorem. Both simply characterize the class M. The difficulty results from
the presence of the special element ! and the fact that the Truemper-Tseng theorem
involves 3-sums, rather than 2-sums. An alternative proof can be found in [Tr86b],
which gives a polynomial-time algorithm to recognize membership in the class M and
to solve the maximum-flow problem over this class.

2Sums are not discussed in this paper. See [Se80] or [Tr86b].



3 Partial Representations

Partial representations were introduced in [Tr84]. Most of the material in this section
can be found in that paper.

Let X be a base of M. The partial representation B (or BM) of the matroid M
with respect to X is the {0,1}-matrix with rows indexed on elements z € X and
columns indexed on elements y € ¥ = F — X such that the (z,y) entry is 1 iff
z € C(X,y), where C(X,y) is the unique circuit contained in X Uy. We abbreviate
the term partial representation by PR. PRs for F7 and F7 are obtained from Figure 1
by deleting the identity columns. Indeed, the PRs that result in this case are actual
“representations” since, with the identity columns included and linear independence
interpreted over the binary field, the independent sets of each matroid correspond
exactly to the linearly independent subsets of columns in each matrix. PRs provide
a generalization when no such representation over a field is available.

Note that if z € X and y € Y, then deleting row z of B yields a PR, B — z, for
the contraction minor M/z, and deleting column y of B yields a PR, B — y, for the
deletion minor M\y. Contractions and deletions of this type are said to be visible in
B. For a fixed PR B, this definition yields a notion of visible minor: N = M/X,\Yo
is visible in B if Xo € X and Yy C Y. Note that the submatrix B — {Xo U Yo} is
a PR of N. Indeed, submatrices of B are in one-to-one correspondence with PRs of
visible minors of M (with respect to B).

Pivoting on a nonzero element at position (z,y) in B means replacing the base X
by the base (X — z) Uy and replacing B by the PR corresponding to this new base.
In the case that B is an actual representation of M over some field, this pivot can
be carried out in the usual linear-algebraic way, taking the missing identity matrix
appropriately into account.

Crucial to several arguments in this paper are convenient PR interpretations of
the notions “span” and “parallel.” These interpretations stem from an appropriate
definition of rank for PRs. Let B(X’,Y’) denote a nonempty square submatrix of B
with row index set X’ and column index set Y’'. We say that B(X',Y’) is nonsingular
if YU (X — X') is a base of M. Note that |Y'U(X — X')| = [Y'| + | X]| - |X'| = | X],
since B(X’,Y") is square, so this set does have the proper cardinality to be a base.
Note also that nonzero 1 x 1 submatrices are nonsingular since for ¢ € C(X,y),
(X —z)Uy is a base. For arbitrary X’ C X,Y’ C Y define the matriz rank of the
submatrix B(X',Y’) by

rk(B(X",Y))=r(Y'U(X - X)) - |X - X'|,

where r is the usual matroid rank function for M.

Lemma 1 Let X' C X, Y' CY, and suppose B(X',Y"') is nonzero. Then all mazi-
mal nonsingular submatrices of B(X',Y') have rk(B(X',Y")) rows.  []



Since 1 x 1 nonzero submatrices are nonsingular, it follows that nonzero subma-
trices have nonzero rank.

Corollary If the rank of a submatriz of a PR is reduced by deleting some of its

columns (rows), then there is some single column (row) that can be reincluded to
increase the rank. (]

Define two columns (rows) of a submatrix of B to be parallel if they are each
nonzero and together form a rank one submatrix. Clearly, distinct y;,y2 € Y are
parallel in M (form a circuit) iff columns y; and y, are parallel, and distinct z,, 2z, € X
are in series in M (form a cocircuit) iff rows z; and z, are parallel. A column
(row) subvector is spanned by a submatrix if it is on the same row (column) set and
appending it to the submatrix does not increase the rank of that submatrix. Note

that two nonzero columns (rows) of a submatrix are parallel iff each one spans the
other.

The dual of the matroid M on E is the matroid M* on E with bases the comple-
ments of the bases of M. It is elementary to prove that where B is a PR of M, B”
is a PR of M™.

Lemma 2 If B is a PR for M and A is a submatriz of B, then rkg(A) = rkgr(A7),
where rkgr is interpreted over M*. 0

This lemma is applied at the start of the proof of Lemma 7. The final result of
this section implies that when computing matrix rank relative to a visible minor, we
need not bother to specify which visible minor.

Lemma 3 If B is a PR of M, B’ is a submatriz of B, and B" is a submatriz of B,
then
rkg(B") = rkg.(B"),

where rkp is interpreted relative to M and rkp: is interpreted relative to the visible
minor corresponding to B'. 0

4 Induced Separations

The key idea in the proof of the Truemper-Tseng result is the notion of an induced
separation.



4.1 Definitions

A k-separation of the matroid M, for k > 1, is a partition (73,73) of E such that
r(Ty) + r(T2) < r(E)+ k-1 and |Ty| > k < |T,|; the k-separation is ezact if
r(Th) + r(T2) =r(E)+ k—1. M is 2-connected, usually called simply connected, if
it has no 1-separation, and $-connected if it has no 1- or 2-separation. Suppose N
is a minor of M. We say that a k-separation (S, S3) of N induces the k-separation
(Tl,Tz) of M lf S,‘ Q T, (’L = 1,2)

We need interpretations of k-separations and induced k-separations in terms of
PRs. To this end, suppose that N = M/X,\Y; gives N as a visible minor of M with
respect to a PR B of M determined by a base X. Let (S;,52) be a k-separation of
N and denote X; = S;NX and ¥; = S;NY (i = 1,2), where Y = FE — X. Define
B;; = B(X,,Y;). This situation is depicted in Figure 2.

1 Yo Y;
i Y
§1 Bll I rBIZ ){1 Blll B:Z
0
X, [(Bal [Bn % Ba B
PR for M PR for N

Figure 2:

Using the above notation, an equivalent definition of k-separation in terms of PRs
is obtained from the computation

Tk(Bgl) + Tk(Blz) = T((X - Xg) U Yi) - IX - X2|

+r((X — X)) UY;) — | X — X4 (1)
= r(81) +7(S2) —r(E)
< k-1,

where X = X;UX; and E = E(N). Thus, a bipartition of the ground set of a matroid,
in this case the matroid N, is a k-separation iff the blocks of the bipartition are
sufficiently large and, in any PR of N, the corresponding “off diagonal” submatrices
determined by this bipartition have total matrix rank at most & — 1.

Now, returning to the PR B of M in Figure 2, we see that finding an induced
k-separation amounts to splitting B vertically somewhere inside Yy and horizontally
somewhere inside Xp, such that the resulting submatrices of B that contain, respec-
tively, By, and B;; have matrix ranks not totaling more than k£ — 1. In the important
special case that (5;,Sz) is exact, the containing submatrix must in each case have
matrix rank equal to the matrix rank of Bz or Bs;, whichever it contains.



4.2 Two Lemmas on Induced Separations

The proof of the next result is a simple exercise using matrix rank.

Lemma 4 If the k-separation (81,52) of N does not induce a k-separation of M,
then B must have a submatriz of one of the following two types:

By, B

By e By, or e;I f1T2
By f B By B
Type c Type r

where in type c the column vector e is not spanned by B3, and in type r the row vector
e is not spanned by By, .

Proof. If rk([Bio Bis]) = rk(B;) and rk([52]) = rk(By), then clearly M has an
induced k-separation (T1,T,) where T, = Siand Ty = S, U X, U Y5. On the other
hand if, say, rk([Byo Bia]) > rk(Bi2) then type ¢ occurs by the corollary to Lemma
1, and similarly for type r. (]

The proof of the following result uses a standard submodularity argument.

Lemma 5 If the k-separation (81, 52) of the minor N is exact and does not induce
a k-separation of M, but does induce a k-separation in any proper visible minor of
M containing N, then B cannot have submatrices of types both r and c.

Proof. If the lemma fails then B has a submatrix of the following form, where e is
not spanned by B,; and e, is not spanned by B;,:

Y
Bu € Bn
z| el Ir
B21 fc BZ?

The assumed minimality of M implies that M/z has a k-separation (T{,T3) in-

duced by (S, 5;). Thus
(M) +r'(T) ~r(E-2) <k -1, (2)

where r’ is the rank function of M /z; moreover, since e, is not spanned by B, we
conclude, using (1) and Lemma 3, that y € T}. Rewriting (2) in terms of r we get

r(Uz)=14+r(TyUz)=1-r(E)+1<k—1. (3)

' 6



Similarly, M\y has an induced k-separation (T7,T}), so that
r(I) +r(Ty) - r(E-y) < k-1, (4)

and e; not spanned by B;; implies z € Ty. Adding (3) to (4) and applying submod-
ularity, we have

2(k-1) > r(TUTY)+r((TI T U )
+r(TUTY Uz)+r(TyNT,) —2r(E) — 1. (5)

Now consider the partition (T7 N T, Tj U T}) of E — {z,y}. Let r” be the rank
function of M/z\y. Since S; C Ty N Ty and S, C T;UTy, and (S, S2) is an exact
k-separation of a minor of M/z\y, (1) and Lemma 3 imply

r(NT)+r"(T,UTy) —r"(E — {z,y}) > k— 1.
Rewriting this inequality in terms of r yields
r(MiNTY)Uz)+r(ThUTyUz)—r(E)—1>k—1. (6)
Adding (5) and (6) and canceling terms yields
r(yUTY)+r(T,NT))—r(E) < k—1.

But (T;UTY, T; N TY) is a partition of E with S; C Ty U Ty and S; C TyNTY, so we
have found an induced k-separation of M, a contradiction. 0

4.3 Series-Parallel (S-P) Reduction

Let (M, N, 81, 52) be such that N is a minor of M, N has no loops or coloops, and
(51, S2) is a k-separation of N. For convenience assume that N = M/ X,\Y, specifies
N as a visible minor relative to a PR B for M. This causes no loss of generality,
being equivalent to assuming that X, is independent and Y; is coindependent; this
form for Xo and Yy can always be arranged. Let y' € Y; and y € S; be such
that y’ and y are parallel in M/X,\(Yo — ¥’'), noting that since N contains no loops
this condition forces y’ € Yo, independent of the particular choice of Y. A parallel
reduction of the 4-tuple (M, N, Sy, 5;) is the 4-tuple (M\y, N’, (S; —y)Uy’, S;) where
N' = (M\y)/Xo\(Yo — y’'). Clearly N' = N using the bijection that maps y’ to y
and fixes all other elements. Note also that ((S; — y) Uy/,S2) is a k-separation of
N'. Let z' € Xo and = € Sy be such that 2’ and z are in series in M/(X, — z')\Yo.
Then a series reduction of (M, N, S,,S5;) is the 4-tuple (M/z, N’,(S; — z') U z, S)
where N' = (M/z)/(Xo — 2')\Yo. As in the case of a parallel reduction, N' & N and
((S1 —z)U ', S;) is a k-separation of N’. An s-p reduction is a reduction of either
type, and an s-p minoris a 4-tuple obtained by a sequence of s-p reductions.

7



Figure 3:

It is important to understand what these operations look like in PRs. Consider,
for example, a parallel reduction. As in the definition, y’ € Y, and y € S, so using
the notation of §4.1, y € YU X,. If y € Y}, the condition that y’ and y are parallel in
M = M/Xo\(Yo —y') says exactly that the parts of columns y’ and y in rows X; U X;
are parallel in B. This situation is pictured in Figure 3, where the appearance of
common vectors € and f in columns y’ and y reflect the parallelism condition. The
indicated parallel reduction is obtained by deleting column y from Y; and replacing
it by y’. If y € X;, the condition that y and y’ are parallel in M says that when
restricted to rows X; U X; column y’ is an identity column with its 1 in row y;
pivoting on the (y,y’) entry exchanges y and y’ in the basis X, and column y can
then be deleted to obtain the indicated parallel reduction. Note that even though
the above operations do change B, they do not affect the submatrix corresponding to
N, either its nonzero pattern or the ranks of any of its submatrices. Note also that,
given a starting PR, we can, in a natural way, associate a sequence of PRs with a
sequence of s-p reductions, even though the reductions themselves need not a priori
be tied to a particular PR. This observation makes it much easier to carry out PR
based arguments for s-p reductions.

A coloop of a matroid is an element contained in every base. In what follows we
need a characterization of when an element is a coloop of a specific deletion minor.

Lemma 6 (a) y €Y, is a coloop of N\S; iff the portion of column y in Bs; is not
spanned by the remaining columns of By, and

(b) z € X is a coloop of N\S: iff the portion of row = in By; is spanned by the
rows of Ba;.

Proof. To prove (a), note that y is not spanned by the remaining columns of By, iff
rk(Bj,) < rk(Bj1) where Bj, is By with column y deleted. Applying the definition
of rk then yields r(S; —y) — | X1] < r(S1) — | X1|, which says exactly that y is in every
base of N\S;, that is, that y is a coloop of N\S;. Similarly, z is spanned by the rows
of By iff r(Sy) — |Xi| = r(S1 — z) — | Xy — z|, that is, iff #(S1) > r(S1 —2). []



The crucial tool in the proof of the Truemper-Tseng theorem is the following
result, a special case of results in [Tr86a] (see Lemma 10.11).

Lemma 7 Assume that (S;,52) is an ezact k-separation of N and does not induce
a k-separation of M, but that for any s-p reduction (M',N', S}, S2) of (M, N, S;,Ss),
the ezact k-separation (S}, S2) of N’ induces a k-separation of M’'. Then the following
conclusions hold:

(a) If B has a type r submatriz then:

(i) If fT is parallel to some row of By, spanned by the remainder of B;,, then
[T f7] is not parallel to any row of [Byy Bia).

(it) If €T has a 1 in some column and the part of this column in By is not
spanned by Bi,, then this is not the only 1 in [eT f7].

(b) If B has a type c submatriz then:

(i) If f is parallel to some column of By spanned by the remainder of By,
then [}] is not parallel to any column of[g;;].

(ii) If e has a 1 in some row and the part of this row in By, is not spanned by
By, then this is not the only 1 in [}].

Proof. It suffices to prove (b). (a) then follows by duality, using Lemma 2. In fact,
it suffices to prove only (b)(i), for suppose (b)(ii) occurs. Let = be the row in which
e has its 1, and let ' be the column containing e. By Lemma 6(b), z is not a coloop
of N\S;; moreover, z is parallel to y’ in M/Xo\(Yo — y'). Pick any element y of Y}
such that the (z,y) entry of B is 1 (such an entry- exists since the part of row z in
By, is not spanned by Bj;). Pivot on this entry. This leaves S; and S; unchanged. It
simply exchanges y for = in the base, so that now z € Y;. But « is still not a coloop
of N\S; and z and y’ are still parallel in M/Xo\(Yo — y'). Hence, after this pivot B
has the form (b)(i) (using Lemma 6(a)). Moreover, since (M, N, 51, S;) is the same,
the required minimality property still holds. Thus, if (b)(i) is excluded, then so is
(b)(i1).

Now we prove (b)(i). The idea is to perform a single element s-p reduction, find
the guaranteed induced k-separation for the reduced M, and then show that this
k-separation induces a k-separation in M, a contradiction. We are assuming that B
has a type c submatrix. Let 3’ € Y5 be the column of B containing [}, and suppose,
contrary to (b)(i), that there is an element y € Y] parallel to y' in M/Xo\(Yo —¥').
Then (M\y, N’,(S1 —y) Uy, S2) is a parallel reduction of (M, N, 51, S;), where N' =
(M\y)/Xo\(Yo — ¥'), and so the exact k-separation ((S; —y)Uy’,S2) of N’ induces



a k-separation (T}, T;) of M\y. This situation may be pictured as follows:

Y; YonT o
— e, P " 2
X] 8] B{I I |_E| B12
B XoNT}
XoNTi ] D | |b
X2 fIBul |f By
y y'

where [A' D] is a submatrix of Byy = B(Xp,Y;). When column y is deleted, the
crossing horizontal and vertical lines above delineate the k-separation (T%,T3). Thus,
the upper-right quadrant contains and has the same rank as B;;, and the lower-left
quadrant, which we denote B, contains and has the same rank as Bj;.

If | 3121] spans [’}'] then so does Bj;, which implies (7] Uy, T3) is a k-separation of
M induced by N, a contradiction. Hence,

[zl >+ ([ ]) 2o =i

where the last equality follows because we assumed Bj, spans f. We conclude that
[A' D], and hence By, has a row not spanned by Bj;, and this row together with e
contradicts Lemma 5. [
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5 Main Theorem

Given two matroids N; and N, both containing a distinguished element I, an I
isomorphism of N; onto N, is an isomorphism that maps ! onto itself.

Truemper-Tseng Theorem Let M be a 3-connected, binary, non-regular matroid
with distinguished element l. Assume M # F; and that M has no F; minor containing
l. Then M has a minor N containing ! and with a PR as shown in Figure J; moreover,
M has a 3-separation induced by one of the following 3-separations of any such N:
({a, iaj’ k}, {b7 <, d, l}); ({a'7 b’ <, 7’}7 {d’jv k’ l}); ({b, C,j, k}; {a, d7 ia I})

i ok
a[T 110
bl1 1 0 1
cl1 011
dlo11 0

Figure 4: Labeled PR for N from Truemper-Tseng Theorem

Proof. It is readily verified that the given 3-separations of NV are in fact 3-separations,

and that they are the only big 3-separations (S;,S;) of N, that is, the only 3-
separations such that |S;| > 4 < |S;|.

Since M is binary but not regular, it contains either an F7 or an F; minor by
Tutte’s characterization of regular matroids [Tu65]. If it contains no F7 minor, then
it follows from the 3-connectedness of M and Seymour’s splitter theory (see (7.6) of
[Se80]) that M = F;. Hence M does have an F; minor. By assumption, [ is not an
element of this F minor, and so it follows by another result of Seymour [Se77a) and
the connectedness of M, that M has a minor N such that N is connected, I € E(N)
and either N\l or N/l = F}. Note that this implies that N is in fact 3-connected, for
otherwise [ is in series with, or parallel to some element of F; and can be exchanged
with this element to yield an F7 minor containing [, a contradiction.

Clearly, a PR for N can be obtained from one for F7 by addition of a single row if
N/l = F; or by addition of a single column if N\! = F;. But adding any row violates
3-connectedness, so it must be that N\l = F;. Considering the ways that a single
column e can be added, there are 8 possibilities that do not produce parallel columns.
Among these e = [0 1 1 1] produces an F7 minor containing /. The remaining 7 are
l-isomorphic to the one in Figure 4, e = {01 1 0]. Fix a PR B of M such that the
PR of N in Figure 4 is visible.

Suppose that none of the big 3-separations of N induces a 3-separation of M.
Consider the particular 3-separation (Si,S2) = ({a,1,4,k}, {b,¢c,d,1}) of N. Since

11



none of the big 3-separations of N induces a 3-separation of M, neither does this one.
Let M be a minimal visible minor of M with respect to B and with the properties that
N is a visible minor of M, and M has no 3-separation induced by (S, Sz). Now let
(M',N', S}, S;) be an s-p minor of (M, N, S;,S;) such that the 3-separation (S}, S7)
of N’ does not induce a 3-separation of M’, but the corresponding 3-separation of any
s-p reduction of (M', N', 5], S2) does. Clearly such an (M’, N’, 5}, 52) exists. Let B’
be the PR of M derived from B by the sequence of operations used to derive N'—see

the discussion in the second paragraph of §4.3. Following the notation of §4.1, this
situation may be viewed as below:

B ] AR L L,
!
B = =‘X0
b1 1 0 1
B, B, ¢ |l 0 1 1
d |0 1 1 0

where a’, ¢/, j' and k' are the images of a, 7, j and k, respectively, under the I-
isomorphism N’ & N generated by the s-p reductions that produced (M’, N’, 51, S5).

We first prove that some 3-separation of N’ does induce a 3-separation of M. This
proof uses the machinery set up in Lemmas 4-7. Then we show, by carefully using
the properties of s-p reductions, that there is a corresponding inducing 3-separation
in N. This last part of the proof depends on the special form of N and the particular
elements in the inducing 3-separation that we find in N’. This fact explains the care
taken surrounding the derivation of (7), below.

Given the minimality assumption on M’ and N’, we may apply Lemmas 4 and 7.
Lemma 4 guarantees that a type r row or a type c column is present, and the two
lemmas together restrict the form that this row or column can take. The possible type
c columns [{] have e = (1] and f* =[111],{100],[010]or [00 1]. e = [1] because
e is not spanned by Bj,. 0 or 2 nonzeros in f7 are ruled out by Lemma 7(b)(ii)
and (b)(i), respectively. Similarly, the possible type r rows [e” f7] have e = [1 0 0],
[010],[001]or{111]and f=11]

It can be checked that the last of these row possibilities yields a visible F7 con-
taining [, and that each of the first three yield an F7 containing [ after just one pivot.
We conclude that only the 4 column cases can occur, and these are all l-isomorphic.
Consider the particular column case [7] = [1 1 1 1]7. Call the one-element extension
of N’ obtained by appending this column N”, and denote the element corresponding
to this column by m.

Examining the 3-separations of N listed in the theorem, we see that the 3-
separation (5], S;) = ({b,¢c,j', k'},{a’,d,7',1}) of N’ induces a 3-separation (57, S2Um)
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of N". After rearranging and performing a pivot on the (c,i’) entry we obtain:

c 7K I m

bil1 1 1 00

a1 1 01 0
B = (1 0 1 1 1 (7)

dlj0 1 1 0 1

Carrying out a similar calculation for each of the other three column possibilities, (7]
={1100]",{1010]" and [1 0 0 1]%, we obtain exactly the same matrix except that
the column labels (&, ;') are replaced by (¢',a’), (a’,7) and (k’, '), respectively, and
the row labels (a’,¢') are replaced by (¥, j'), (', ¥') and (¢, a’), respectively.

Now this N” is a minor of M, and if the exhibited 3-separation does not induce
a 3-separation of M, then we can take an s-p minimal example generated from N”
and M. Applying Lemmas 4 and 7, the possible new rows that can be added are
[11101],{10001),(01001] and [0010 1]. In each case the zero in the fourth

position follows from the previous claim that an F} using ! results in all the row cases
in going from N’ to N”.

Let’s consider what happens if we add one of these rows to BY". Suppose we add
(1000 1]. Then a pivot on the (¢, j') entry produces F; using [. The remaining cases
reduce to this one as follows: For [0 1 0 0 1] pivot on the (b, j’) entry, for [0 0 1 0 1]
pivot on the (b, k') entry, and for {1 1 1 0 1] pivot on the (b, c) entry. Thus, all row
cases are excluded.

Now consider the column case. The transposes of the columns that can be added
are[1111],{1100],[1010]and [1001]. These are all l-isomorphic—[1 1 1 1] may
be obtained from each of the final three possibilities, by a single pivot on the entries
(b,5"), (b,k") and (b,c), respectively. We may therefore suppose that the column
[1 11 1]7 has been added. But then a pivot on the (i',m) entry produces an F;
minor containing I. Hence, all column cases are excluded.

We have proved that the 3-separation (S5}, SoUm) of N” induces a 3-separation, say
(Ty, T3), of M. Clearly, this implies that the 3-separation (S5}, S;) of N’ also induces
(T1,T:). N’ on the other hand was produced by a sequence of s-p reductions starting
with N. To finish the proof of the theorem we find a k-separation (S;, S2) of N that
induces this same (T},T;). The (5;,5;) we take is the one identified with (51,5;)
under the l-isomorphism between N and N’ generated by these s-p reductions. We
prove that (51, S;) has the desired property by showing that for each pair of elements
exchanged in each s-p reduction used to obtain N’, either both are in T; or both are
in T;. Let us assume that exactly one such s-p reduction is involved. The general
case will then follow by induction.

Thus, we assume N’ was obtained from N by an s-p reduction involving two
elements z and z’ where 2’ € E(M) — E(N) and z € S; = {a,1,j, k} (the exact form
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of S; is needed here!). Denote by B” the PR of M obtained by performing on B’ the
(¢,4') pivot used to obtain BY". Let X” denote the corresponding base with Y” =
E — X", and let X and Y be such that BN" = B” — (X! U Y{"). There are now
two cases to consider: when the reduction is a parallel reduction and when it is a
series reduction. Consider the parallel case. Clearly z € Y’ (otherwise contracting
z to form N’ from M leaves 2’ a loop). If 2/ = j' or k’, then column z of B” must
have a 1 in row b, and so z, 2’ € T; otherwise, the inclusion of z in T; would imply
that rk(B"(X"NTy,Y" NTy)) > rk(B"(X" NS, Y" N S;)) = 0. On the other hand,
if 2/ = a’ or ¢/, then z must have exactly one 1 among the rows a’, i’ and d (namely,
in row a’ or ¢/, respectively) and so z,z’' € T,. Now consider the series case. Then we
have z € X{. If 2’ = j' or ¥/, row z has exactly one 1 in columns ¢, j’ or ¥’ and so
z,2' € Ty. Similarly, if 2’ = a’ or ¢/, then row z must have a 1 in column [/ (which row
d does not!) and so z,z’ € T;. This completes the proof in the case where the added
column, m, has all 1s. The remaining three choices for column m are handled by the
identical argument, given our observations following (7) about the way in which each
choice alters the labeling of BY".

This completes the proof if just one s-p reduction was used to obtain N’ from
N. But this actually proves the result in general, by induction on the number of
reductions, since for any single such s-p reduction only the identities of a’, ¢/, ;' and
k' can change and not their entries in the submatrix corresponding to the current
copy of ‘N’. 0
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